Linear Programming Approach to Determine Balance Diet with Minimum Cost: A Case Study

Shuhag Islam ${ }^{1}$, Mohammad Kamrul Hasan ${ }^{1}$, Md. Rakibul Islam ${ }^{1}$
${ }^{1}$ Department of Industrial \& Production Engineering, Rajshahi University of Engineering \& Technology

E-mail: shuhag.ruet@gmail.com, kh439570@gmail.com, rbn_khan@yahoo.com

Abstract

This paper presents a balance diet planning by using linear programming approach. Not having a properly balanced diet leads the people to disease-related life. So, not having a balanced diet is assumed as one of the most critical problems in the present world. The cause of not having to maintain a balanced diet is lacking education of what to eat and what amount to eat. In this paper, balanced diet planning corresponding of each user to take a variety of foods for a few times per day (5 per day). The planning will help users to obtain nutritional requirements for the human body in daily routine and to prevent chronic disease such as high blood pressure, heart disease, stroke, depression, osteoporosis, diabetes, etc.

Keywords: balance diet, minimum cost, linear programming, nutrition, amount of foods.

1. Introduction

A diet is all about that we consume in a day. A balanced diet consisting of a variety of different types of food and providing adequate of the nutrients necessary for good health. A balanced diet includes six main nutrients, i.e. fats, protein, carbohydrates, fiber, vitamins, and minerals. All these nutrients are present in the different food that we eat. Different food items have different properties of nutrients present in them. A balanced diet provides the body with essential nutrition and adequate calories. It is very important because human organs and tissues need proper nutrition to work effectively. Without proper nutrition, the human body is more prone to disease, infection, fatigue and poor performance during work time.

Not maintaining a balanced diet is a serious problem in the entire life course. More than one-third of all deaths are caused by one or more this five chronic disease: heart disease, cancer, stroke, chronic obstructive pulmonary disease, and diabetes. According to a report of WHO, 79% of all deaths worldwide that are attributable to chronic diseases are already occurring in a developing country. The cause of getting chronic disease is not to maintain a balanced diet.

There are many studies which are focused on balance diet and chronic diseases such as diet planning for human using mixed-integer, linear programming, prevention of chronic disease by diet and diet problem and nutrient requirements using linear programming approach.

The research has done about human diet planning using linear programming. A computerized model is applied to planning a diet at minimum cost while supplying all nutritional requirements. The research aims to suggest people have healthy food at the lowest cost as possible.

To prevent chronic disease, it is necessary to obtain a well-balanced diet in our daily life. Thus linear programming approach will be applied to get a better result.

2. Literature Review

Mustafa mamat, noor fadzilah zulkifli, siti kamila deraman, noor maizura mohamad noor (2012) attempt to fuzzy linear programming approach in balanced diet planning for eating disorder and disease-related lifestyle. this paper has described a fuzzy linear programming approach based on the variety of foods consumed by users. the fuzzy linear programming approach is used to calculate the amount of nutrient in food taken and it is considered to estimate nutritional requirements for the human body in daily routine. then, balanced diet planning will be
produced as a result. this planning will help users to prevent eating disorder and disease-related lifestyles such as anorexia nervosa, diabetes, heart attack and obesity [1]. André Briend, Nicole Darmon, Elaine Ferguson, Juergen G. Erhardt (January 2003 Lippincott Williams \& Wilkins, Inc., Philadelphia) was a lot of work was done on balance diet to prevent chronic disease. This paper analyzing and optimizing children's diets during the complementary feeding period by using linear programming. During the complementary feeding period, children require a nutrient-dense diet to meet their high nutritional requirements. This paper used linear programming is much more efficient than the empirical "trial and error" approach used for formulating diets during the complementary feeding period [2] walter et al. [3] discussed prevention of chronic disease by diet and lifestyle changes. this study identifies the relationships between dietary and lifestyle factors and chronic diseases and recommended lifestyle changes and the potential supporting evidence to prevent chronic disease. Meanwhile, Sklan and Dariel [4] have done research about human diet planning using mixed-integer linear programming. A computerized model is applied to planning diet at minimum cost while supplying all nutritional requirements; maintain nutrients relationships and preserving eating practices. Ishi Hiroaki [11] attempt to develop by using internet technology, and it provides multi-user service and menu information sharing capacity like SNS (social networking service). The system works on Web server built by Apache, MySQL, PHP. For menu planning, a genetic algorithm is applied. This paper fully focuses on everyday meals close to our life and proposes a wellbalanced menu planning system as a preventive measure of lifestyle-related disease.

3. Linear Programming Approach

Linear programming is a mathematical method to optimize (minimize or maximize) a linear function of a set of decision variable while respecting multiple linear constraints.

The function Z to be optimized by linear programming is called the objective function. The variables $\mathrm{x}_{1}, \mathrm{x}_{2}$, $\ldots x_{n}$ whose value can be changed to optimize the function Z are called decision variables.

A function Z of serval variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ is linear when it can be expressed in the following way:

$$
\begin{equation*}
Z=a_{0}+a_{1} \cdot x_{1}+a_{2} x_{2} \ldots+a_{n} \tag{1.1}
\end{equation*}
$$

Where, $a_{0}, a_{1}, a_{2} \ldots a_{n}$ are constraints.
In the same way, a constraint on serval variable $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ is linear when it can be expressed in the following way:

$$
\begin{equation*}
b_{1} x_{1}+b_{2} x_{2}+\cdots b_{n} x_{n} \geq b_{0} \tag{1.2}
\end{equation*}
$$

Where, $b_{0}, b_{1}, b_{2} . . b_{n}$ are constraints.
our proposed minimize cost balance diet problem model as following below:

$$
\text { Minimize } Z=\sum_{j=1}^{n} c_{j} x_{j}
$$

Subject to,

$$
\begin{gathered}
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \\
\sum_{j=1}^{n} a_{i j} x_{j} \leq d_{i} \\
\sum_{j=1}^{n} a_{i j} x_{j}=e_{i} \\
i=1,2,3, \ldots m, j=1,2, . . n, x_{j} \geq 0
\end{gathered}
$$

Where
$j=$ food eaten per day,
$c_{j}=$ amount of cost 1 g of food j,
$x_{j}=$ required the amount of food j eaten per day,
$a_{i j}=$ the amount of nutrient i in 1 g of food j,
$b_{i}=$ the minimum required the amount of nutrient i,
$d_{i}=$ the maximum required the amount of nutrient i,
$e_{i}=$ the daily required the amount of nutrient i,
$m=$ the amount of nutrients,
$n=$ the number of foods.
By using our proposed model, anyone can get a balanced diet plan with minimum cost. Anyone can choose as he or she our proposed model will provide him or her required amount of nutrition with minimum cost as possible and the output of this proposed model will provide the users the required amount of food in gram (g).

4. Data Collection

	Energ y (kcal)	Protei n (g)	Fat (g)	Saturated fat (g)	Carbohydrate (g)	Suga r (g)	Sodium (g)	Dietary fiber (g)
Cooked Rice	1.31	0.024	0.021	0.00054	0.289	0	0.0000012	0.0048
Rahu fish	0.97	0.167	0.034	0.0023	0.032	0	0.001	0
Potato	0.72	0.018	$\begin{gathered} 0.000 \\ 8 \end{gathered}$	0	0.2	$\begin{gathered} 0.00 \\ 74 \end{gathered}$	0.012	0.014
Lentils	1.16	0.089	0.003	0.0003	0.2	$\begin{gathered} 0.02 \\ 1 \end{gathered}$	0.0024	0.08
Banana	0.89	$\begin{gathered} 0.008 \\ 5 \end{gathered}$	0	0	0.229	$\begin{gathered} 0.11 \\ 9 \end{gathered}$	0.0000085	0.0178
Egg	1.37	0.11	$\begin{gathered} 0.087 \\ 7 \end{gathered}$	0.028	0.011	0	0	0
Apple	0.52	0.003	0.002	0	0.14	0.1	0.00001	0.024

The number of sample food that has been chosen is 7 types and the sample number of nutrients is 8 types. The prizes of the foods are collected from the local market (Shahab bazar, Rajshahi, Bangladesh) in November 2018. Each value of nutrient and price of sample food is taken for 1 g .

Table 4.1: Data collection for nutrition ingredients and their amount.

Table 4.2: Data collection for foods and their price

Foods name	Cooked Rice	Rahu fish	Potato	Lentils	Banana	Egg	Apple
Price	0.0167	0.2	0.03	0.12	0.05	0.12	0.13
(BDT Per g)							

5. Data Analysis

Nutrients requirement were 2400 kcal for those of a 21 to 40 years old-sedentary man taken from the 20152020 dietary guideline (health.gov, Appendix 2). The acceptable macronutrient distribution range for protein, fat, saturate fat, carbohydrate, sugar, dietary fiber is 10% to $35 \%, 20 \%$ to 35%, At most $9 \%, 45 \%$ to 65%, At least $7.6 \%, 6 \%$ of total calories, respectively and required amount of sodium is 0.423 g per day (www.nhs.uk).

For 1000 kcal of energy required protein, fat, saturated fat, carbohydrate, sugar, dietary fiber is at least 10 g , at least 20 g , at most 9 g , at least 45 g , at least 7.6 g , at least 6 g respectively.

We calculate 1800 kcal for lunch (1000 kcal) and dinner (800 kcal) and consider 600 kcal for breakfast and snack. we take nutrients of a white-large grain of rice which is increased 3 times than raw rice after cooking.

A sample model for launch menu

Here,
$x_{1}=$ cooked rice
$x_{2}=$ rohu fish
$x_{3}=$ potato
$x_{4}=$ lentils
$x_{5}=$ banana
$x_{6}=\operatorname{egg}$
$x_{7}=$ apple
Objective function, Minimize $z=0.0167 x_{1}+0.2 x_{2}+0.03 x_{3}+0.12 x_{4}+0.05 x_{5}+0.12 x_{6}+0.13 x_{7}$
Subject to,

$$
\begin{array}{r}
1.31 x_{1}+0.97 x_{2}+0.72 x_{3}+1.16 x_{4}+0.89 x_{5}+1.37 x_{6}+0.52 x_{7}=1000 \\
0.024 x_{1}+0.167 x_{2}+0.018 x_{3}+0.089 x_{4}+0.0085 x_{5}+0.11 x_{6}+0.003 x_{7} \geq 25 \\
0.021 x_{1}+0.034 x_{2}+0.00083 x_{3}+0.003 x_{4}+0 x_{5}+0.0877 x_{6}+0.002 x_{7} \leq 35 \\
0.021 x_{1}+0.034 x_{2}+0.00083 x_{3}+0.003 x_{4}+0 x_{5}+0.0877 x_{6}+0.002 x_{7} \geq 20 \\
0.00054 x_{1}+0.0023 x_{2}+0 x_{3}+0.0003 x_{4}+0 x_{5}+0.028 x_{6}+0 x_{7} \leq 10 \\
0.289 x_{1}+0.032 x_{2}+0.2 x_{3}+0.2 x_{4}+0.229 x_{5}+0.011 x_{6}+0.14 x_{7} \geq 104 \\
0 x_{1}+0 x_{2}+0.0074 x_{3}+0.021 x_{4}+0.119 x_{5}+0 x_{6}+0.1 x_{7} \geq 25.4 \\
0.000012 x_{1}+0.001 x_{2}+0.012 x_{3}+0.0024 x_{4}+0.0000085 x_{5}+0 x_{6}+0.00001 x_{7} \leq 3 \\
0.000012 x_{1}+0.001 x_{2}+0.012 x_{3}+0.0024 x_{4}+0.0000085 x_{5}+0 x_{6}+0.00001 x_{7} \geq 0.417 \\
0.0048 x_{1}+0 x_{2}+0.014 x_{3}+0.08 x_{4}+0.0178 x_{5}+0 x_{6}+0.024 x_{7} \leq 6 \\
450 \leq x_{1} \geq 480 \\
110 \leq x_{2} \geq 220 \\
23 \leq x_{3} \geq 100 \\
0 \leq x_{4} \geq 50 \\
100 \leq x_{5} \geq 120 \\
50
\end{array}
$$

$1^{\text {st }}$ constraint equation is satisfied with the required energy by the use of a combination of foods. Next $2^{\text {nd }}$ constraint equation is satisfied required protein, $3^{\text {rd }}$ and $4^{\text {th }}$ constraints equations are satisfied required fat, $5^{\text {th }}$ constraint equation is satisfied required saturated fat, $6^{\text {th }}$ constraint equation is satisfied required carbohydrate, $7^{\text {th }}$ constraint equation is satisfied required sugar, $8^{\text {th }}$ and $9^{\text {th }}$ constraint equation is satisfied required sodium, $10^{\text {th }}$ constraint equation is satisfied required dietary fiber. Rest of equations are satisfied with the required amount of foods.

6. Result Analysis

After solving the sample model for launch (1000 kcal), we get the amount of food in grams a man of 21 to 40 years-oldsedentary have to eat. We also get the minimum cost for the combination of food. Beside "Fig. 1" can be obtained by solving the sample models. By solving our sample model for launch menu with the help of excel solver, we get a result in the feasible region which means it satisfies each and every constraints equation.

After analyzing the sensitivity report provided by excel solver, it was learned that the obtained result was the feasible but not optimal result. Doing the sensitivity analysis, we get an optimal result. Further cost minimization is not possible which is

Fig. 1. The Result of Sample Launch Menu
being seen above "Fig. 2".

After the sensitivity test of sample launch menu, there are only two variables ($\mathrm{x}_{5}, \mathrm{x}_{6}$) of the amount of foods have shadow price. So, these variables have sensitivity and x_{5} variable more sensitive than x_{6} variable because of this "Fig. 3 " show that the slope of x_{5} variable is steeper than the slope of x_{6} variable. The slope of the variable determines how much effect of cost for change of the amount of foods.

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
SCS3	objective $\times 1$	469.6895356	0	0.0167	0.124404613	0.095479592
SDS3	objective $\times 2$	110.5336087	0	0.2	0.123318626	0.156561303
SES3	objective x3	24.89304481	0	0.03	0.776301489	0.115861202
SFS3	objective $\times 4$	0	0	0.12	$1 \mathrm{E}+30$	0.195235136
SGS3	objective $\times 5$	120	0	0.05	0.043024743	$1 \mathrm{E}+30$
SHS3	objective $\times 6$	70	0	0.12	0.533266159	$1 \mathrm{E}+30$
\$153	objective x 7	109.3579147	0	0.13	1.020093526	0.03621908
Constraints						
Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease
SOS10		187.8160683	0	104	83.81606829	$1 \mathrm{E}+30$
SOS11		25.4	1.846126425	25.4	1.062043221	0.162633479
SOS12		0.417	0	3	$1 \mathrm{E}+30$	2.583
SOS13		7.363602351	0	6	1.363602351	$1 \mathrm{E}+30$
SO\$14		469.6895356	0	450	19.68953563	$1 \mathrm{E}+30$
SOS15		110.5336087	0	110	0.533608681	1E+30
SO\$16		24.89304481	0	23	1.893044812	$1 \mathrm{E}+30$
SOS17		0	0.195235136	0	7.52719791	0
SOS18		120	0	100	20	$1 \mathrm{E}+30$
SOS19		70	0	50	20	$1 \mathrm{E}+30$
SOS20		109.3579147	0	100	9.357914684	$1 \mathrm{E}+30$
SOS21		469.6895356	0	480	$1 \mathrm{E}+30$	10.31046437
SOS22		110.5336087	0	220	$1 \mathrm{E}+30$	109.4663913
S0\$23		24.89304481	0	100	$1 \mathrm{E}+30$	75.10695519

Fig. 2. The Sensibility Report of Sample Launch Menu

Fig. 3. Sensitivity test of sample launch menu

7. Conclusion

This paper has described a linear programming approach based on the variety of foods consumed by users. The linear programming approach is used to calculate the amount of foods to fulfill the required amount of nutrients with minimum cost as possible. Then a balanced diet planning will be produced as a result. This planning will help users to prevent chronic diseases such as heart diseases, cancer, stroke, obesity, and diabetes.

8. References

[1] Mamat M, Fadzilah Zulkifli N, Fadzilah Zulkifli S, Maizura Mohamad N (2012), "Fuzzy Linear Programming Approach in Balance Diet Planning for Eating Disorder and Disease-related Lifestyle", viewed 15 December 2018.
[2] Briend A, Darmon N, Ferguson E, G. Erhardt J (2003), "Linear Programming: A Mathematical Tool for Analyzing and Optimizing Children's Diets During the Complementary Feeding Period", viewed 12 November 2018.
[3] C.W. Walter, P.K. Jeffrey, N. Rachel, D. Courtenay, P. Pekka, and A. G. Thomas, "Disease Control Priorities in Developing Countries. In Prevention of Chronic Disease by Means of Diet and Lifestyle Changes", pp 833-850, The International Bank for Reconstruction and Development/The World Bank Group, 2006.
[4] D. Sklan and I. Dariel, "Diet planning for humans using mixed-integer linear programming", British Journal of Nutrition, 70 (1993): 27-35.
[5] Saati S, Hatami-Marbini A, Hajiahkondi E (1012), "A Two-Fold Linear programming model with Fuzzy Data", viewed 02 January 2019.
[6] Government health appendix-2, https://health.gov/dietaryguidelines/2015/guidelines/appendix-2.
[7] Y. Fang, Fuzzy Decision Making and Maximization Decision Making. In Fuzzy Portfolio Optimization: Theory and Methods, ed. K.K. Lai, and S. Wang, pp: 19-20. Heidelberg: Springer-Verlag, 2008.
[8] Joint WHO/FAO Expert Consultation, WHO Technical Report Series 916 Diet, Nutrition and the Prevention of Chronic Diseases, World Health Organization, 2003.
[9] G. J. Lieberman, Operations Research, $8^{\text {th }}$ edition.
[10] Anderson A, Earle M (1983), "Diet Planning in the Third World by Linear and global Programming", viewed 02 December 2018.
[11] Kasima T, Matsumoto S, Ishii H (2009), "Evaluation of Menu Planning Capacity Based on multi-dimensional 0/1 Knapsack Problem of Nutritional Management System", viewed 15 January 2019.

